Sains Malaysiana 53(4)(2024): 759-768
http://doi.org/10.17576/jsm-2024-5304-03
Penentuan Zon Sesar di Ulu Bendul, Negeri Sembilan menggunakan Kaedah Keberintangan Geoeletrik dan Mikrostruktur Batuan
(Determination of
Fault Zones at Ulu Bendul, Negeri Sembilan using Geoelectrical Resistivity and Rock
Microstructure Methods)
AZHAR AHMAD NAZRI1,2,
MOHD ROZI UMOR2,*, NUR SYARIENNA RAZMI2,
MOHAMMAD ANURI GHAZALI3, MOHD HARIRI ARIFIN2, NOR
SHAHIDAH MOHD NADZIR2 & NORBERT SIMON2
1Cawangan Kejuruteraan Cerun, Jabatan Kerja Raya, Tingkat 12,
Blok F, Ibupejabat JKR Malaysia, Jalan Sultan Salahuddin, 50480 Kuala Lumpur, Malaysia
2Program Geologi, Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, 43600 UKM Bangi,
Selangor, Malaysia
3Geo Mag Engineering,
No 31B, Level 2, Jalan Pelabur B, 23/B, Seksyen 23, 40300 Shah Alam,
Selangor, Malaysia
Received:
26 June 2023/Accepted: 28 February 2024
Abstrak
Kawasan kajian terletak di Kg Ulu Bendol, daerah Kuala Pilah di Negeri Sembilan. Objektif utama kajian adalah untuk mengenal pasti zon sesar menggunakan kaedah geofizik keberintangan elektrik secara protokol Wenner-Schlumberger. Sesar Ulu Bendol, juga dikenali sebagai zon sesar Kuala Pilah, menganjur hampir timur ke barat. Rekod seismik menunjukkan gegaran kecil telah dicetuskan di empat lokasi berhampiran jalan utama Seremban-Kuala Pilah, yang sejajar dengan garisan sesar Ulu Bendol. Kaedah keberintangan elektrik digunakan untuk menentukan lokasi garis sesar secara tepat. Sebanyak 14 garis survei keberintangan elektrik telah dijalankan di 14 lokasi yang dikenal pasti. Batuan granit merupakan unit geologi utama yang menutupi kawasan kajian. Jenis batuan, tahap luluhawa, struktur sesar utama, zon retakan dan kehadiran zon tepu air di bawah permukaan ditentukan berdasarkan tafsiran nilai keberintangan, iaitu granit segar batuan dasar (> 1000 Ωm), granit sederhana luluhawa dan terkekar (500-1000 Ωm), batuan dasar granit terluluhawa dengan batuan yang sangat terkekar (100-500 Ωm) dan zon tepu air dalam batuan yang sangat retak (<100 Ωm). Sesar yang ditafsirkan terletak di kawasan tanah pamah dan dataran dengan nilai kerintangan 100 Ωm hingga 500 Ωm. Sesar yang terletak di Kg. Ulu Bendol, telah menganjur ke timur berhampiran Kg. Mampas, Seri Menanti dengan anggaran kira-kira 10 km. Kajian petrografi ke atas 12 sampel batuan dalam zon sesar menunjukkan bahawa kebanyakan batuan sesar telah mengalami canggaan yang kuat dibuktikan dengan wujudnya mikro sesar, herotan mineral dan kuarza dihancurkan menjadi saiz lebih kecil. Di kawasan zon sesar, sesar yang lebih kecil, juga dikenali sebagai sesar tersegmentasi dengan panjang kira-kira 50 hingga 250 meter, mencetuskan pergerakan berulang sesar utama. Kesimpulan daripada kajian ini menunjukkan kaedah keberintangan elektrik dapat menentukan keujudan sesar utama di Ulu Bendul. Ia boleh digunakan bagi menentukan sesar utama di kawasan lain sekiranya sesar tidak dapat dicerap di permukaan.
Kata kunci: Kajian petrografi; sesar Ulu Bendul, survei keberintangan elektrik
Abstract
The study area is located at Kg Ulu Bendol, Kuala Pilah district in Negeri Sembilan. The main objective of the study was to
identify fault zones using electrical resistivity geophysical methods with Wenner-Schlumberger protocol. The Ulu Bendol fault, known as the Kuala Pilah fault zone, towards
from east to west. Seismic records show small tremors have been triggered at
four locations near the main Seremban-Kuala Pilah road, which is aligned with the Ulu Bendol fault
line. The electrical resistance
method is used to determine the fault line's exact location. A total of
14 resistivity survey lines were conducted in 14 identified locations. Granite
rock is the main geological unit that covers the study area. Rock type, degree
of weathering, main fault structure, fracture zone and the presence of
subsurface water-saturated zone are determined based on the interpretation of
resistivity values, i.e., fresh granite bedrock (> 1000 Ωm),
moderately weathered and fractured granite (500-1000 Ωm),
weathered granite bedrock with highly fractured rocks (100-500 Ωm) and water-saturated zones in highly fractured
rocks (<100 Ωm). The interpreted faults are
located in the lowlands and plains with resistivity values of 100 Ωm to 500 Ωm. Fault
located at Kg. Ulu Bendol has extended to the east
near Kg. Mampas, Seri Menanti with an estimated length of about 10 km. A petrographic study of 12 rock
samples from the fault zone showed that most of the fault rocks were severely
deformed indicated by micro fault, mineral eroded and quartz crushed into small
grain. In the fault zone area, smaller faults, also known as segmented faults,
with a length of about 50 to 250 meters, trigger the repeated movement of main
faults. The conclusion from this study shows that the electrical resistivity
method can determine the existence of the main fault in Ulu Bendul.
It can also be used to determine the main fault in other areas when the fault
cannot be observed on the surface.
Keywords: Petrography study; resistivity
survey; Ulu Bendol Fault
REFERENCES
Abdul Rahim Samsudin. 1990. Geofizik: Konsep dan Kepenggunaan. Kuala Lumpur: Dewan Bahasa dan Pustaka.
Bignell, J.D. &
Snelling, N.J. 1977. Geochronology of Malayan granites. Overseas Geology and
Mineral Resources 47: 77.
Cobbing, E.J., Pitfield, P.E.J., Darbyshire,
D.P.F. & Mallick, D.J. 1992. The granites of the
South East Asian tin belt (BGS overseas memoirs). British Geological Survey. hlm. 369.
Esmail Al-Sabahi, Abdul Rahim Samsudin, Wan Zuhairi Wan Yaacob &
Umar Hamzah. 2008. 2D Electrical resistivity
investigarion at Ampar Tenang Landfill Site, Selangor D.E. Sains Malaysiana37(1): 33-37.
Ghani, A.A. 2009. Plutonism.
In Geology of Peninsular Malaysia, disunting oleh Hutchison, C.S. & Tan, D.N.K. Kuala Lumpur:
Geological Society of Malaysia. hlm. 211-232.
Griffiths, D.H. & Barker, R.D. 1993.
Two-dimensional resistivity, imaging and modelling in areas of complex geology. Applied Geophysics 29: 211-226.
John Stephen Kayode, Mohd Hariri Arifin & Mohd Nawawi. 2019. Characterization
of a proposed quarry site using multi-electrode electrical resistivity
tomography. Sains Malaysiana 48(5): 945-963.
Khoo, K.K. 1998. Geology and
Mineral Resources of the Kuala Pilah area, Negeri Sembilan. Geological Survey of Malaysia Map
Report 11. hlm. 93.
Khoo, K.K. 1973. The geology of Bahau area, Sheet 104, (Kuala Pilah), Negeri Sembilan. Geological Survey of Malaysia
Annual Report 1972. hlm. 93-103.
Lim, P.L. & Tjia, H.D.
1979. The Genting Thrust Belt at Genting Sempah,
Selangor. Sains Malaysiana 8(2): 125-146.
Loke, M.H. & Dahlin, T. 2002. A
comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging
inversion. J. Appl. Geophys. 49: 149-162.
Loke, M.H. &
Barker, R.D. 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical
Prospecting 44: 131-152.
Mark Jeeva & Umar Hamzah. 2012. Kajian migrasi bahan larut resap di tapak pelupusan sampah Sungai Sedu, Telok Datuk dengan kaedah geofizik dan geokimia. Sains Malaysiana 41(7): 829-840.
Mustaffa Kamal Shuib, Mohammad Abdul Manap,
Felix Tongkul, Ismail Bin Abd Rahim, Tajul Anuar Jamaludin, Noraini Surip, Rabieahtul Abu Bakar, Mohd Rozaidi Che Abas, Roziah Che Musa & Zahid Ahmad. 2017. Active faults in Peninsular
Malaysia with emphasis on active geomorphic features of Bukit Tinggi Region. Malaysian Journal
of Geosciences 1(1):
13-26.
Mustaffa Kamal Shuib. 2012. Paleoearthquakes and
active faulting activities in Peninsular Malaysia. Seminar Teknikal Kebangsaan Gempabumi dan tsunami, Petaling Jaya 13-14 Disember 2012. Jabatan Metereologi Malaysia.
Mustaffa Kamal Shuib. 2009. The recent Bukit Tinggi earthquakes and its
relationship to major structures. Geological Society of Malaysia Bulletin 55:
1-6.
Mustaffa Kamal Shuib. 2008. A preliminary interpretation of the recent
Bukit Tinggi earthquakes using SRTM DEM. Warta Geologi 34(1): 5-7.
Sasaki, Y. 1992. Resolution of
resistivity tomography inferred from numerical simulation. Geophys. Prospect 40: 453-464.
Shu, Y.K. 1989. Geology and mineral resources of the
Kuala Klawang area, Jelebu district, Negeri Sembilan. Geological Survey of
Malaysia District Memoir 20: 208.
Siti Nazira Masrom, Mohd Hariri Arifin, Abdul Rahim
Harun & Abdul Rahim Samsudin. 2011. Survei keberintangan geoelektrik untuk mengesan terowong di Bukit Tenggek, Setiu, Terengganu. Sains Malaysiana 40(11): 1223-1229.
Stauffer,
P.H. 1968. The Kuala Lumpur Fault Zone: A proposed major strike-slip fault
across Malaysia. Newsletter Geol. Soc. Malaysia 15: 2-4.
Store, H., Storz,
W. & Jacobs, F. 2000. Electrical resistivity tomography to investigate
geological structures of earth’s upper crust. Geophys.
Prospect 48: 455-471.
Tjia, H.D. 1989. Major
faults of Peninsular Malaysia on remotely sensed images. Sains Malaysiana 18(1): 101-114.
Tjia, H.D. & Zaiton Harun. 1985. Regional structures of Peninsular
Malaysia. Sains Malaysiana 14(1): 95-107.
Umar Hamzah, Nurul Diyana Bahrudin, Mohd Azmi Ismail & Amry Amin Abbas. 2009. Survei pengimejan elektrik dan georadar dalam kajian Tanah Runtuh Taman
Hill View, Ampang, Selangor. Sains Malaysiana 38(5): 645-653.
Wah, A.Y.S. 2011. Geological assessment of the earthquake sources and hazard in Malaysia. Seminar Teknikal Gempabumi, Kuala Lumpur.
Wang, Z., Cai, X., Yan, J.,
Wang, J., Liu, Y. & Zhang, L. 2017. Using the intergrated geophysical methods detecting active faults: A case study in Beijing, China. Journal
of Applied Geophysics 156: 82-91.
Zaiton Harun. 1992. Anatomi sesar-sesar utama Semenanjung Malaysia. Tesis Doktor Falsafah, Universiti Kebangsaan Malaysia, Bangi: 215 (tidak diterbitkan).
*Corresponding
author; email: umor@ukm.edu.my
|